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An indoline subunit that bears a stereocenter in the 2 position is
found in a range of natural products,1 as well as in an array of
biologically active nonnatural products.2 Few catalytic processes
have been reported that generate such indolines in highly enan-
tioenriched form.3

One strategy for achieving this objective is the kinetic resolution4

of a racemic mixture of indolines. A number of enzyme-based meth-
ods for the resolution of amines via N-acylation have been described,5

although not for indolines. Progress in the development of non-
enzymatic N-acylation catalysts for the kinetic resolution of amines
has been extremely limitedsnot only have there been no reports
of success with indolines, but only two effective methods have been
described for amines of any type (certain primary amines6 and 2-oxa-
zolidinones (Birman)7). In this communication, we establish that a
chiral, nonenzymatic catalyst can achieve the kinetic resolution of a
third family of amines, specifically, 2-substituted indolines (eq 1).

In an earlier study, we reported that planar-chiral PPY derivative
2 serves as a catalyst for the kinetic resolution of benzylic primary
amines (eq 2; s) selectivity factor ) (rate of fast-reacting
enantiomer)/(rate of slow-reacting enantiomer)4).6 Disappointingly,
when we applied these conditions to indolines, we observed no
reaction even at 0°C, because of the comparatively low nucleo-
philicity of the indoline.

After considerable effort we were able to develop a process by
which a 2-substituted indoline can be kinetically resolved with good
selectivity (Table 1). Under these conditions, as for those depicted
in eq 2, the C5Me5-substituted PPY derivative (2) is virtually

inactive (entry 1).8,9 Fortunately, replacement of C5Me5 by C5Ph5

leads to a more effective acylation catalyst that can achieve the
desired kinetic resolution with a useful selectivity factor (entry 2).

In a study of desymmetrizations of meso epoxides catalyzed by
planar-chiral pyridine-N-oxides,10 we determined that increasing the
steric demand of a C5Ph5 group of the catalyst via meta substitution11

provided a more effective chiral environment,12 as manifested by
enhanced enantioselectivity. We attempted to exploit this strategy
for the first time in the context of planar-chiral PPY derivatives, to
enhance the efficiency of these kinetic resolutions of indolines. We
were pleased to determine that the incorporation of methyl substi-
tuents in the meta positions of the phenyl rings does indeed lead to
an improvement in the selectivity factor (entry 2 vs entry 3). How-
ever, a further increase in the bulk of the “bottom” cyclopentadienyl
ring (Me f Et) is not beneficial for stereoselection (entry 4).

On the basis of exploratory studies of kinetic resolutions of indo-
lines by stoichiometric chiral reagents (e.g., highersvalues when N-
acylated3 with a halide counterion13 was employed), we hypothe-
sized that the addition of halide salts might be advantageous for
selectivity.14 This has proved to be the case; in particular, the
presence of LiBr/18-crown-6 leads to the highests value that we
have observed to date (entry 3). The use of smaller crown ethers
results in lower selectivity (entries 5 and 6),15 as does the omission
of 18-crown-6 (entry 7). Under otherwise identical conditions but
in the absence of LiBr (entry 8) or in the presence of other halide
sources (e.g., entries 9-11), the kinetic resolution proceeds with
diminished efficiency.

By conducting the acylation at room temperature, the reaction
time can be shortened,16 at the expense of a lowers value (entry
12). In the presence of commercially available acylating agents,

Table 1. Effect of Reaction Parameters on the Efficiency of the
Kinetic Resolution of 2-Methylindolinea

entry change from the optimized conditions % conversion s

1 (+)-2 instead of (+)-1 4 <2
2 (+)-3 instead of (+)-1 48 10
3 none 54 23
4 (+)-4 instead of (+)-1 58 19
5 15-crown-5 instead of 18-crown-6 54 20
6 12-crown-4 instead of 18-crown-6 43 3
7 no 18-crown-6 16 6
8 no LiBr 55 <2
9 Bu4NBr instead of LiBr/18-crown-6 49 2
10 LiCl instead of LiBr 43 14
11 Lil instead of LiBr 12 12
12 room temp instead of 0°C (2 days) 49 11

a All data are the average of two runs.
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essentially no selectivity (acetic anhydride, acetyl chloride, and
methyl chloroformate) or no reactivity (vinyl acetate) is observed.
Finally, Birman’s method, which is outstanding for the kinetic reso-
lution of 2-oxazolidinones,7 is not effective for indolines (s < 1.1).

We have established that an array of 2-substituted indolines,
including functionalized compounds, can be kinetically resolved
with good selectivity factors under the optimized reaction conditions
(Table 2, entries 1-4).17 Furthermore, 2,3-disubstituted indolines
are suitable substrates (entries 5-9); as might be anticipated, the
process is more efficient for the cis isomer than for the correspond-
ing trans isomer (entry 7 vs entry 8). It is worth noting that 2,3-
disubstituted indolines cannot be accessed in high ee via the
asymmetric hydrogenation of indoles.3a Finally, substituents in the
5 position are tolerated (entries 9-11).18,19

There are a number of features of this process that warrant future
mechanistic investigation, such as the critical role played by LiBr
and 18-crown-6. In addition, we are intrigued by the fact that
catalyst 1, but not 2, is effective for the kinetic resolution of
indolines, whereas2, but not 1, is useful for the resolution of
primary benzylic amines (eq 2). Through1H NMR studies, we have
made the interesting observation that the resting state of the catalyst
during indoline resolutions is the free catalyst, which contrasts with
the process depicted in eq 2, for which the resting state is the
N-acylated catalyst.6,20,21

In conclusion, we have reported the first method, enzymatic or
nonenzymatic, for the kinetic resolution of indolines through
catalytic N-acylation. To improve the selectivity factor, we
synthesized a new planar-chiral PPY derivative (1) wherein the
chiral environment was tuned through the use of a more bulky
cyclopentadienyl group. In light of the very limited success that
has been described in the development of nonenzymatic acylation
catalysts for the resolution of amines, we believe that our study
represents an interesting step forward in addressing this difficult

challenge. Future work will be directed at gaining an improved
understanding of this process and applying that knowledge to the
design of more versatile and efficient catalysts for the kinetic
resolution of amines and related compounds.
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Table 2. Kinetic Resolutions of Indolinesa

a The selectivity factor is the average of two runs. The ee and percent
conversion are for a particular run.
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